If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-34x+2=0
a = 2; b = -34; c = +2;
Δ = b2-4ac
Δ = -342-4·2·2
Δ = 1140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1140}=\sqrt{4*285}=\sqrt{4}*\sqrt{285}=2\sqrt{285}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{285}}{2*2}=\frac{34-2\sqrt{285}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{285}}{2*2}=\frac{34+2\sqrt{285}}{4} $
| 6x-13+x+5=90 | | 6x-13+x+5=180 | | 6x-13+x+5=135 | | 0.01x^2-0.11x+0.01=0 | | 6x-13+x+5=75 | | 2(2)x+2=64 | | 7d-4=5d+6 | | 39.96+0.16x=49.96+0.12x | | 4.5w=8280 | | 103=4x=17 | | -3(8-5z)=6z | | 50=7c+15 | | 13+z=21 | | 75=x+(x*0.25) | | 2x^2+3x-210=0 | | -35=-25x | | -y-3=19 | | -4x+17=69 | | 8x2-34x-9=0 | | 36/32=x/40 | | 36/32=d/40 | | w/5+13=43 | | 5b-6=21 | | x-9=-40 | | 29=y/3-11 | | -1/2=-3/2u+7/4 | | 4=w/2+13 | | 10x+6)(13x-2)(8x-1)+71=360 | | 8=-8+4y | | 83=-u+200 | | 1.3(j+1)=3.9 | | 13-u=212 |